Magnetic fields in large-scale structures Yongzhong Xu (T-8)

Collaborators:

S. Habib (T-8)

P. P. Kronberg (IGPP)

Q.W. Dufton (IGPP)

How to Measure the B-field?

- Synchrotron emission
- Zeeman Effect
- Faraday Rotation measure (RM)

4/16/05

What is RM?

- RM = $0.81 n_e B d [rad m^{-2}]$
- Statistically, we expect a larger RM variation after radio signal passing through large-scale structures

4/16/05

Major Contaminations in RM

- RM caused by the B-field of the radio sources
 - Can be minimized by averaging RMs over a certain area of sky
- RM caused by the B-field in the Milky Way
 - RM is dependent on the galactic latitude (Simard-Normandin and Kronberg, 1980, ApJ)

4/16/05 CosmoDay

Data

Data

Comparison of RMs in High and Low Density Areas

Sky areas	Ave. SRM	Ave. RRM
I (50)	14.3	16.2
II (30)	10.0	14.4
IV (45)	56.8	78.8
V (42)	41.0	67.2

Correlations between RMs and Weighted Pathlengths

Constraints on B-field

Conclusions

- The enhanced RMs give clues of the existence of magnetic field in Hercules and P-P superclusters
- Comparing with the simple model, we constrained the Bfield of order 0.3 uG in Hercules Supercluster.
- We found that RM shows positive correlation with pathlength.

4/16/05 CosmoDay